/* Copyright (c) 2005-2020 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifndef __TBB__flow_graph_node_impl_H #define __TBB__flow_graph_node_impl_H #ifndef __TBB_flow_graph_H #error Do not #include this internal file directly; use public TBB headers instead. #endif #include "_flow_graph_item_buffer_impl.h" //! @cond INTERNAL namespace internal { using tbb::internal::aggregated_operation; using tbb::internal::aggregating_functor; using tbb::internal::aggregator; template< typename T, typename A > class function_input_queue : public item_buffer { public: bool empty() const { return this->buffer_empty(); } const T& front() const { return this->item_buffer::front(); } bool pop( T& t ) { return this->pop_front( t ); } void pop() { this->destroy_front(); } bool push( T& t ) { return this->push_back( t ); } }; //! Input and scheduling for a function node that takes a type Input as input // The only up-ref is apply_body_impl, which should implement the function // call and any handling of the result. template< typename Input, typename Policy, typename A, typename ImplType > class function_input_base : public receiver, tbb::internal::no_assign { enum op_type {reg_pred, rem_pred, try_fwd, tryput_bypass, app_body_bypass, occupy_concurrency #if TBB_DEPRECATED_FLOW_NODE_EXTRACTION , add_blt_pred, del_blt_pred, blt_pred_cnt, blt_pred_cpy // create vector copies of preds and succs #endif }; typedef function_input_base class_type; public: //! The input type of this receiver typedef Input input_type; typedef typename receiver::predecessor_type predecessor_type; typedef predecessor_cache predecessor_cache_type; typedef function_input_queue input_queue_type; typedef typename tbb::internal::allocator_rebind::type queue_allocator_type; __TBB_STATIC_ASSERT(!((internal::has_policy::value) && (internal::has_policy::value)), "queueing and rejecting policies can't be specified simultaneously"); #if TBB_DEPRECATED_FLOW_NODE_EXTRACTION typedef typename predecessor_cache_type::built_predecessors_type built_predecessors_type; typedef typename receiver::predecessor_list_type predecessor_list_type; #endif //! Constructor for function_input_base function_input_base( graph &g, __TBB_FLOW_GRAPH_PRIORITY_ARG1(size_t max_concurrency, node_priority_t priority) ) : my_graph_ref(g), my_max_concurrency(max_concurrency) , __TBB_FLOW_GRAPH_PRIORITY_ARG1(my_concurrency(0), my_priority(priority)) , my_queue(!internal::has_policy::value ? new input_queue_type() : NULL) , forwarder_busy(false) { my_predecessors.set_owner(this); my_aggregator.initialize_handler(handler_type(this)); } //! Copy constructor function_input_base( const function_input_base& src) : receiver(), tbb::internal::no_assign() , my_graph_ref(src.my_graph_ref), my_max_concurrency(src.my_max_concurrency) , __TBB_FLOW_GRAPH_PRIORITY_ARG1(my_concurrency(0), my_priority(src.my_priority)) , my_queue(src.my_queue ? new input_queue_type() : NULL), forwarder_busy(false) { my_predecessors.set_owner(this); my_aggregator.initialize_handler(handler_type(this)); } //! Destructor // The queue is allocated by the constructor for {multi}function_node. // TODO: pass the graph_buffer_policy to the base so it can allocate the queue instead. // This would be an interface-breaking change. virtual ~function_input_base() { if ( my_queue ) delete my_queue; } task* try_put_task( const input_type& t) __TBB_override { return try_put_task_impl(t, internal::has_policy()); } //! Adds src to the list of cached predecessors. bool register_predecessor( predecessor_type &src ) __TBB_override { operation_type op_data(reg_pred); op_data.r = &src; my_aggregator.execute(&op_data); return true; } //! Removes src from the list of cached predecessors. bool remove_predecessor( predecessor_type &src ) __TBB_override { operation_type op_data(rem_pred); op_data.r = &src; my_aggregator.execute(&op_data); return true; } #if TBB_DEPRECATED_FLOW_NODE_EXTRACTION //! Adds to list of predecessors added by make_edge void internal_add_built_predecessor( predecessor_type &src) __TBB_override { operation_type op_data(add_blt_pred); op_data.r = &src; my_aggregator.execute(&op_data); } //! removes from to list of predecessors (used by remove_edge) void internal_delete_built_predecessor( predecessor_type &src) __TBB_override { operation_type op_data(del_blt_pred); op_data.r = &src; my_aggregator.execute(&op_data); } size_t predecessor_count() __TBB_override { operation_type op_data(blt_pred_cnt); my_aggregator.execute(&op_data); return op_data.cnt_val; } void copy_predecessors(predecessor_list_type &v) __TBB_override { operation_type op_data(blt_pred_cpy); op_data.predv = &v; my_aggregator.execute(&op_data); } built_predecessors_type &built_predecessors() __TBB_override { return my_predecessors.built_predecessors(); } #endif /* TBB_DEPRECATED_FLOW_NODE_EXTRACTION */ protected: void reset_function_input_base( reset_flags f) { my_concurrency = 0; if(my_queue) { my_queue->reset(); } reset_receiver(f); forwarder_busy = false; } graph& my_graph_ref; const size_t my_max_concurrency; size_t my_concurrency; __TBB_FLOW_GRAPH_PRIORITY_EXPR( node_priority_t my_priority; ) input_queue_type *my_queue; predecessor_cache my_predecessors; void reset_receiver( reset_flags f) __TBB_override { if( f & rf_clear_edges) my_predecessors.clear(); else my_predecessors.reset(); __TBB_ASSERT(!(f & rf_clear_edges) || my_predecessors.empty(), "function_input_base reset failed"); } graph& graph_reference() const __TBB_override { return my_graph_ref; } task* try_get_postponed_task(const input_type& i) { operation_type op_data(i, app_body_bypass); // tries to pop an item or get_item my_aggregator.execute(&op_data); return op_data.bypass_t; } private: friend class apply_body_task_bypass< class_type, input_type >; friend class forward_task_bypass< class_type >; class operation_type : public aggregated_operation< operation_type > { public: char type; union { input_type *elem; predecessor_type *r; #if TBB_DEPRECATED_FLOW_NODE_EXTRACTION size_t cnt_val; predecessor_list_type *predv; #endif /* TBB_DEPRECATED_FLOW_NODE_EXTRACTION */ }; tbb::task *bypass_t; operation_type(const input_type& e, op_type t) : type(char(t)), elem(const_cast(&e)) {} operation_type(op_type t) : type(char(t)), r(NULL) {} }; bool forwarder_busy; typedef internal::aggregating_functor handler_type; friend class internal::aggregating_functor; aggregator< handler_type, operation_type > my_aggregator; task* perform_queued_requests() { task* new_task = NULL; if(my_queue) { if(!my_queue->empty()) { ++my_concurrency; new_task = create_body_task(my_queue->front()); my_queue->pop(); } } else { input_type i; if(my_predecessors.get_item(i)) { ++my_concurrency; new_task = create_body_task(i); } } return new_task; } void handle_operations(operation_type *op_list) { operation_type *tmp; while (op_list) { tmp = op_list; op_list = op_list->next; switch (tmp->type) { case reg_pred: my_predecessors.add(*(tmp->r)); __TBB_store_with_release(tmp->status, SUCCEEDED); if (!forwarder_busy) { forwarder_busy = true; spawn_forward_task(); } break; case rem_pred: my_predecessors.remove(*(tmp->r)); __TBB_store_with_release(tmp->status, SUCCEEDED); break; case app_body_bypass: { tmp->bypass_t = NULL; __TBB_ASSERT(my_max_concurrency != 0, NULL); --my_concurrency; if(my_concurrencybypass_t = perform_queued_requests(); __TBB_store_with_release(tmp->status, SUCCEEDED); } break; case tryput_bypass: internal_try_put_task(tmp); break; case try_fwd: internal_forward(tmp); break; case occupy_concurrency: if (my_concurrency < my_max_concurrency) { ++my_concurrency; __TBB_store_with_release(tmp->status, SUCCEEDED); } else { __TBB_store_with_release(tmp->status, FAILED); } break; #if TBB_DEPRECATED_FLOW_NODE_EXTRACTION case add_blt_pred: { my_predecessors.internal_add_built_predecessor(*(tmp->r)); __TBB_store_with_release(tmp->status, SUCCEEDED); } break; case del_blt_pred: my_predecessors.internal_delete_built_predecessor(*(tmp->r)); __TBB_store_with_release(tmp->status, SUCCEEDED); break; case blt_pred_cnt: tmp->cnt_val = my_predecessors.predecessor_count(); __TBB_store_with_release(tmp->status, SUCCEEDED); break; case blt_pred_cpy: my_predecessors.copy_predecessors( *(tmp->predv) ); __TBB_store_with_release(tmp->status, SUCCEEDED); break; #endif /* TBB_DEPRECATED_FLOW_NODE_EXTRACTION */ } } } //! Put to the node, but return the task instead of enqueueing it void internal_try_put_task(operation_type *op) { __TBB_ASSERT(my_max_concurrency != 0, NULL); if (my_concurrency < my_max_concurrency) { ++my_concurrency; task * new_task = create_body_task(*(op->elem)); op->bypass_t = new_task; __TBB_store_with_release(op->status, SUCCEEDED); } else if ( my_queue && my_queue->push(*(op->elem)) ) { op->bypass_t = SUCCESSFULLY_ENQUEUED; __TBB_store_with_release(op->status, SUCCEEDED); } else { op->bypass_t = NULL; __TBB_store_with_release(op->status, FAILED); } } //! Creates tasks for postponed messages if available and if concurrency allows void internal_forward(operation_type *op) { op->bypass_t = NULL; if (my_concurrency < my_max_concurrency || !my_max_concurrency) op->bypass_t = perform_queued_requests(); if(op->bypass_t) __TBB_store_with_release(op->status, SUCCEEDED); else { forwarder_busy = false; __TBB_store_with_release(op->status, FAILED); } } task* internal_try_put_bypass( const input_type& t ) { operation_type op_data(t, tryput_bypass); my_aggregator.execute(&op_data); if( op_data.status == internal::SUCCEEDED ) { return op_data.bypass_t; } return NULL; } task* try_put_task_impl( const input_type& t, /*lightweight=*/tbb::internal::true_type ) { if( my_max_concurrency == 0 ) { return apply_body_bypass(t); } else { operation_type check_op(t, occupy_concurrency); my_aggregator.execute(&check_op); if( check_op.status == internal::SUCCEEDED ) { return apply_body_bypass(t); } return internal_try_put_bypass(t); } } task* try_put_task_impl( const input_type& t, /*lightweight=*/tbb::internal::false_type ) { if( my_max_concurrency == 0 ) { return create_body_task(t); } else { return internal_try_put_bypass(t); } } //! Applies the body to the provided input // then decides if more work is available task * apply_body_bypass( const input_type &i ) { return static_cast(this)->apply_body_impl_bypass(i); } //! allocates a task to apply a body inline task * create_body_task( const input_type &input ) { return (internal::is_graph_active(my_graph_ref)) ? new( task::allocate_additional_child_of(*(my_graph_ref.root_task())) ) apply_body_task_bypass < class_type, input_type >( *this, __TBB_FLOW_GRAPH_PRIORITY_ARG1(input, my_priority)) : NULL; } //! This is executed by an enqueued task, the "forwarder" task* forward_task() { operation_type op_data(try_fwd); task* rval = NULL; do { op_data.status = WAIT; my_aggregator.execute(&op_data); if(op_data.status == SUCCEEDED) { task* ttask = op_data.bypass_t; __TBB_ASSERT( ttask && ttask != SUCCESSFULLY_ENQUEUED, NULL ); rval = combine_tasks(my_graph_ref, rval, ttask); } } while (op_data.status == SUCCEEDED); return rval; } inline task *create_forward_task() { return (internal::is_graph_active(my_graph_ref)) ? new( task::allocate_additional_child_of(*(my_graph_ref.root_task())) ) forward_task_bypass< class_type >( __TBB_FLOW_GRAPH_PRIORITY_ARG1(*this, my_priority) ) : NULL; } //! Spawns a task that calls forward() inline void spawn_forward_task() { task* tp = create_forward_task(); if(tp) { internal::spawn_in_graph_arena(graph_reference(), *tp); } } }; // function_input_base //! Implements methods for a function node that takes a type Input as input and sends // a type Output to its successors. template< typename Input, typename Output, typename Policy, typename A> class function_input : public function_input_base > { public: typedef Input input_type; typedef Output output_type; typedef function_body function_body_type; typedef function_input my_class; typedef function_input_base base_type; typedef function_input_queue input_queue_type; // constructor template function_input( graph &g, size_t max_concurrency, __TBB_FLOW_GRAPH_PRIORITY_ARG1(Body& body, node_priority_t priority) ) : base_type(g, __TBB_FLOW_GRAPH_PRIORITY_ARG1(max_concurrency, priority)) , my_body( new internal::function_body_leaf< input_type, output_type, Body>(body) ) , my_init_body( new internal::function_body_leaf< input_type, output_type, Body>(body) ) { } //! Copy constructor function_input( const function_input& src ) : base_type(src), my_body( src.my_init_body->clone() ), my_init_body(src.my_init_body->clone() ) { } ~function_input() { delete my_body; delete my_init_body; } template< typename Body > Body copy_function_object() { function_body_type &body_ref = *this->my_body; return dynamic_cast< internal::function_body_leaf & >(body_ref).get_body(); } output_type apply_body_impl( const input_type& i) { // There is an extra copied needed to capture the // body execution without the try_put tbb::internal::fgt_begin_body( my_body ); output_type v = (*my_body)(i); tbb::internal::fgt_end_body( my_body ); return v; } //TODO: consider moving into the base class task * apply_body_impl_bypass( const input_type &i) { output_type v = apply_body_impl(i); #if TBB_DEPRECATED_MESSAGE_FLOW_ORDER task* successor_task = successors().try_put_task(v); #endif task* postponed_task = NULL; if( base_type::my_max_concurrency != 0 ) { postponed_task = base_type::try_get_postponed_task(i); __TBB_ASSERT( !postponed_task || postponed_task != SUCCESSFULLY_ENQUEUED, NULL ); } #if TBB_DEPRECATED_MESSAGE_FLOW_ORDER graph& g = base_type::my_graph_ref; return combine_tasks(g, successor_task, postponed_task); #else if( postponed_task ) { // make the task available for other workers since we do not know successors' // execution policy internal::spawn_in_graph_arena(base_type::graph_reference(), *postponed_task); } task* successor_task = successors().try_put_task(v); #if _MSC_VER && !__INTEL_COMPILER #pragma warning (push) #pragma warning (disable: 4127) /* suppress conditional expression is constant */ #endif if(internal::has_policy::value) { #if _MSC_VER && !__INTEL_COMPILER #pragma warning (pop) #endif if(!successor_task) { // Return confirmative status since current // node's body has been executed anyway successor_task = SUCCESSFULLY_ENQUEUED; } } return successor_task; #endif /* TBB_DEPRECATED_MESSAGE_FLOW_ORDER */ } protected: void reset_function_input(reset_flags f) { base_type::reset_function_input_base(f); if(f & rf_reset_bodies) { function_body_type *tmp = my_init_body->clone(); delete my_body; my_body = tmp; } } function_body_type *my_body; function_body_type *my_init_body; virtual broadcast_cache &successors() = 0; }; // function_input // helper templates to clear the successor edges of the output ports of an multifunction_node template struct clear_element { template static void clear_this(P &p) { (void)tbb::flow::get(p).successors().clear(); clear_element::clear_this(p); } template static bool this_empty(P &p) { if(tbb::flow::get(p).successors().empty()) return clear_element::this_empty(p); return false; } }; template<> struct clear_element<1> { template static void clear_this(P &p) { (void)tbb::flow::get<0>(p).successors().clear(); } template static bool this_empty(P &p) { return tbb::flow::get<0>(p).successors().empty(); } }; #if TBB_DEPRECATED_FLOW_NODE_EXTRACTION // helper templates to extract the output ports of an multifunction_node from graph template struct extract_element { template static void extract_this(P &p) { (void)tbb::flow::get(p).successors().built_successors().sender_extract(tbb::flow::get(p)); extract_element::extract_this(p); } }; template<> struct extract_element<1> { template static void extract_this(P &p) { (void)tbb::flow::get<0>(p).successors().built_successors().sender_extract(tbb::flow::get<0>(p)); } }; #endif template struct init_output_ports { #if __TBB_CPP11_VARIADIC_TEMPLATES_PRESENT template static OutputTuple call(graph& g, const tbb::flow::tuple&) { return OutputTuple(Args(g)...); } #else // __TBB_CPP11_VARIADIC_TEMPLATES_PRESENT template static OutputTuple call(graph& g, const tbb::flow::tuple&) { return OutputTuple(T1(g)); } template static OutputTuple call(graph& g, const tbb::flow::tuple&) { return OutputTuple(T1(g), T2(g)); } template static OutputTuple call(graph& g, const tbb::flow::tuple&) { return OutputTuple(T1(g), T2(g), T3(g)); } template static OutputTuple call(graph& g, const tbb::flow::tuple&) { return OutputTuple(T1(g), T2(g), T3(g), T4(g)); } template static OutputTuple call(graph& g, const tbb::flow::tuple&) { return OutputTuple(T1(g), T2(g), T3(g), T4(g), T5(g)); } #if __TBB_VARIADIC_MAX >= 6 template static OutputTuple call(graph& g, const tbb::flow::tuple&) { return OutputTuple(T1(g), T2(g), T3(g), T4(g), T5(g), T6(g)); } #endif #if __TBB_VARIADIC_MAX >= 7 template static OutputTuple call(graph& g, const tbb::flow::tuple&) { return OutputTuple(T1(g), T2(g), T3(g), T4(g), T5(g), T6(g), T7(g)); } #endif #if __TBB_VARIADIC_MAX >= 8 template static OutputTuple call(graph& g, const tbb::flow::tuple&) { return OutputTuple(T1(g), T2(g), T3(g), T4(g), T5(g), T6(g), T7(g), T8(g)); } #endif #if __TBB_VARIADIC_MAX >= 9 template static OutputTuple call(graph& g, const tbb::flow::tuple&) { return OutputTuple(T1(g), T2(g), T3(g), T4(g), T5(g), T6(g), T7(g), T8(g), T9(g)); } #endif #if __TBB_VARIADIC_MAX >= 9 template static OutputTuple call(graph& g, const tbb::flow::tuple&) { return OutputTuple(T1(g), T2(g), T3(g), T4(g), T5(g), T6(g), T7(g), T8(g), T9(g), T10(g)); } #endif #endif // __TBB_CPP11_VARIADIC_TEMPLATES_PRESENT }; // struct init_output_ports //! Implements methods for a function node that takes a type Input as input // and has a tuple of output ports specified. template< typename Input, typename OutputPortSet, typename Policy, typename A> class multifunction_input : public function_input_base > { public: static const int N = tbb::flow::tuple_size::value; typedef Input input_type; typedef OutputPortSet output_ports_type; typedef multifunction_body multifunction_body_type; typedef multifunction_input my_class; typedef function_input_base base_type; typedef function_input_queue input_queue_type; // constructor template multifunction_input(graph &g, size_t max_concurrency, __TBB_FLOW_GRAPH_PRIORITY_ARG1(Body& body, node_priority_t priority) ) : base_type(g, __TBB_FLOW_GRAPH_PRIORITY_ARG1(max_concurrency, priority)) , my_body( new internal::multifunction_body_leaf(body) ) , my_init_body( new internal::multifunction_body_leaf(body) ) , my_output_ports(init_output_ports::call(g, my_output_ports)){ } //! Copy constructor multifunction_input( const multifunction_input& src ) : base_type(src), my_body( src.my_init_body->clone() ), my_init_body(src.my_init_body->clone() ), my_output_ports( init_output_ports::call(src.my_graph_ref, my_output_ports) ) { } ~multifunction_input() { delete my_body; delete my_init_body; } template< typename Body > Body copy_function_object() { multifunction_body_type &body_ref = *this->my_body; return *static_cast(dynamic_cast< internal::multifunction_body_leaf & >(body_ref).get_body_ptr()); } // for multifunction nodes we do not have a single successor as such. So we just tell // the task we were successful. //TODO: consider moving common parts with implementation in function_input into separate function task * apply_body_impl_bypass( const input_type &i) { tbb::internal::fgt_begin_body( my_body ); (*my_body)(i, my_output_ports); tbb::internal::fgt_end_body( my_body ); task* ttask = NULL; if(base_type::my_max_concurrency != 0) { ttask = base_type::try_get_postponed_task(i); } return ttask ? ttask : SUCCESSFULLY_ENQUEUED; } output_ports_type &output_ports(){ return my_output_ports; } protected: #if TBB_DEPRECATED_FLOW_NODE_EXTRACTION void extract() { extract_element::extract_this(my_output_ports); } #endif void reset(reset_flags f) { base_type::reset_function_input_base(f); if(f & rf_clear_edges)clear_element::clear_this(my_output_ports); if(f & rf_reset_bodies) { multifunction_body_type *tmp = my_init_body->clone(); delete my_body; my_body = tmp; } __TBB_ASSERT(!(f & rf_clear_edges) || clear_element::this_empty(my_output_ports), "multifunction_node reset failed"); } multifunction_body_type *my_body; multifunction_body_type *my_init_body; output_ports_type my_output_ports; }; // multifunction_input // template to refer to an output port of a multifunction_node template typename tbb::flow::tuple_element::type &output_port(MOP &op) { return tbb::flow::get(op.output_ports()); } inline void check_task_and_spawn(graph& g, task* t) { if (t && t != SUCCESSFULLY_ENQUEUED) { internal::spawn_in_graph_arena(g, *t); } } // helper structs for split_node template struct emit_element { template static task* emit_this(graph& g, const T &t, P &p) { // TODO: consider to collect all the tasks in task_list and spawn them all at once task* last_task = tbb::flow::get(p).try_put_task(tbb::flow::get(t)); check_task_and_spawn(g, last_task); return emit_element::emit_this(g,t,p); } }; template<> struct emit_element<1> { template static task* emit_this(graph& g, const T &t, P &p) { task* last_task = tbb::flow::get<0>(p).try_put_task(tbb::flow::get<0>(t)); check_task_and_spawn(g, last_task); return SUCCESSFULLY_ENQUEUED; } }; //! Implements methods for an executable node that takes continue_msg as input template< typename Output, typename Policy> class continue_input : public continue_receiver { public: //! The input type of this receiver typedef continue_msg input_type; //! The output type of this receiver typedef Output output_type; typedef function_body function_body_type; typedef continue_input class_type; template< typename Body > continue_input( graph &g, __TBB_FLOW_GRAPH_PRIORITY_ARG1(Body& body, node_priority_t priority) ) : continue_receiver(__TBB_FLOW_GRAPH_PRIORITY_ARG1(/*number_of_predecessors=*/0, priority)) , my_graph_ref(g) , my_body( new internal::function_body_leaf< input_type, output_type, Body>(body) ) , my_init_body( new internal::function_body_leaf< input_type, output_type, Body>(body) ) { } template< typename Body > continue_input( graph &g, int number_of_predecessors, __TBB_FLOW_GRAPH_PRIORITY_ARG1(Body& body, node_priority_t priority) ) : continue_receiver( __TBB_FLOW_GRAPH_PRIORITY_ARG1(number_of_predecessors, priority) ) , my_graph_ref(g) , my_body( new internal::function_body_leaf< input_type, output_type, Body>(body) ) , my_init_body( new internal::function_body_leaf< input_type, output_type, Body>(body) ) { } continue_input( const continue_input& src ) : continue_receiver(src), my_graph_ref(src.my_graph_ref), my_body( src.my_init_body->clone() ), my_init_body( src.my_init_body->clone() ) {} ~continue_input() { delete my_body; delete my_init_body; } template< typename Body > Body copy_function_object() { function_body_type &body_ref = *my_body; return dynamic_cast< internal::function_body_leaf & >(body_ref).get_body(); } void reset_receiver( reset_flags f) __TBB_override { continue_receiver::reset_receiver(f); if(f & rf_reset_bodies) { function_body_type *tmp = my_init_body->clone(); delete my_body; my_body = tmp; } } protected: graph& my_graph_ref; function_body_type *my_body; function_body_type *my_init_body; virtual broadcast_cache &successors() = 0; friend class apply_body_task_bypass< class_type, continue_msg >; //! Applies the body to the provided input task *apply_body_bypass( input_type ) { // There is an extra copied needed to capture the // body execution without the try_put tbb::internal::fgt_begin_body( my_body ); output_type v = (*my_body)( continue_msg() ); tbb::internal::fgt_end_body( my_body ); return successors().try_put_task( v ); } task* execute() __TBB_override { if(!internal::is_graph_active(my_graph_ref)) { return NULL; } #if _MSC_VER && !__INTEL_COMPILER #pragma warning (push) #pragma warning (disable: 4127) /* suppress conditional expression is constant */ #endif if(internal::has_policy::value) { #if _MSC_VER && !__INTEL_COMPILER #pragma warning (pop) #endif return apply_body_bypass( continue_msg() ); } else { return new ( task::allocate_additional_child_of( *(my_graph_ref.root_task()) ) ) apply_body_task_bypass< class_type, continue_msg >( *this, __TBB_FLOW_GRAPH_PRIORITY_ARG1(continue_msg(), my_priority) ); } } graph& graph_reference() const __TBB_override { return my_graph_ref; } }; // continue_input //! Implements methods for both executable and function nodes that puts Output to its successors template< typename Output > class function_output : public sender { public: template friend struct clear_element; typedef Output output_type; typedef typename sender::successor_type successor_type; typedef broadcast_cache broadcast_cache_type; #if TBB_DEPRECATED_FLOW_NODE_EXTRACTION typedef typename sender::built_successors_type built_successors_type; typedef typename sender::successor_list_type successor_list_type; #endif function_output( graph& g) : my_graph_ref(g) { my_successors.set_owner(this); } function_output(const function_output & other) : sender(), my_graph_ref(other.my_graph_ref) { my_successors.set_owner(this); } //! Adds a new successor to this node bool register_successor( successor_type &r ) __TBB_override { successors().register_successor( r ); return true; } //! Removes a successor from this node bool remove_successor( successor_type &r ) __TBB_override { successors().remove_successor( r ); return true; } #if TBB_DEPRECATED_FLOW_NODE_EXTRACTION built_successors_type &built_successors() __TBB_override { return successors().built_successors(); } void internal_add_built_successor( successor_type &r) __TBB_override { successors().internal_add_built_successor( r ); } void internal_delete_built_successor( successor_type &r) __TBB_override { successors().internal_delete_built_successor( r ); } size_t successor_count() __TBB_override { return successors().successor_count(); } void copy_successors( successor_list_type &v) __TBB_override { successors().copy_successors(v); } #endif /* TBB_DEPRECATED_FLOW_NODE_EXTRACTION */ // for multifunction_node. The function_body that implements // the node will have an input and an output tuple of ports. To put // an item to a successor, the body should // // get(output_ports).try_put(output_value); // // if task pointer is returned will always spawn and return true, else // return value will be bool returned from successors.try_put. task *try_put_task(const output_type &i) { // not a virtual method in this class return my_successors.try_put_task(i); } broadcast_cache_type &successors() { return my_successors; } graph& graph_reference() const { return my_graph_ref; } protected: broadcast_cache_type my_successors; graph& my_graph_ref; }; // function_output template< typename Output > class multifunction_output : public function_output { public: typedef Output output_type; typedef function_output base_type; using base_type::my_successors; multifunction_output(graph& g) : base_type(g) {my_successors.set_owner(this);} multifunction_output( const multifunction_output& other) : base_type(other.my_graph_ref) { my_successors.set_owner(this); } bool try_put(const output_type &i) { task *res = try_put_task(i); if(!res) return false; if(res != SUCCESSFULLY_ENQUEUED) { FLOW_SPAWN(*res); // TODO: Spawn task inside arena } return true; } using base_type::graph_reference; protected: task* try_put_task(const output_type &i) { return my_successors.try_put_task(i); } template friend struct emit_element; }; // multifunction_output //composite_node #if __TBB_FLOW_GRAPH_CPP11_FEATURES template void add_nodes_impl(CompositeType*, bool) {} template< typename CompositeType, typename NodeType1, typename... NodeTypes > void add_nodes_impl(CompositeType *c_node, bool visible, const NodeType1& n1, const NodeTypes&... n) { void *addr = const_cast(&n1); fgt_alias_port(c_node, addr, visible); add_nodes_impl(c_node, visible, n...); } #endif } // internal #endif // __TBB__flow_graph_node_impl_H